Go to documentation repository
Note | ||
---|---|---|
| ||
You need to create a cache beforehand in order to start and correctly operate the basic Face detection tool on GPU (see 기본 얼굴 인식 도구를 GPU에서 시작하고 정상적으로 운영하려면 미리 캐시를 생성해야 합니다 (GPU에서 얼굴 검출 작업 최적화 참조). |
To configure the basic Face detection tool, do the following:
기본 얼굴 인식 도구를 구성하려면 다음 단계를 따르세요.
이 도구를 실시간 얼굴 인식에 사용하려면 해당 매개변수를 예로 설정하세요 (1,
If you need to use this detection tool for real-time face recognition, set the corresponding parameter to Yes (1, see실시간 얼굴 검출 구성 참조).
If you need to record metadata, select Yes from the Record objects tracking list캡처된 얼굴에 대해 나이 및 성별 정보를 데이터베이스에 저장하려면, 해당 필드에서 예를 선택하세요 If you need to save age and gender information for each captured face in the database, select Yes in the corresponding field (1).
Info | ||
---|---|---|
| ||
The average error in age recognition is 5 years나이 인식에서의 평균 오류는 5년입니다. |
분석된 프레임은 지정된 해상도로 축소됩니다 (7, 긴 변이 1920픽셀로 설정). 작동 방식은 다음과 같습니다.
원본 이미지의 긴 변이 Frame size change 필드에 지정된 값을 초과하면, 두 배로 나누어집니다.
결과 해상도가 지정된 값보다 작으면 그 해상도가 사용됩니다.
결과 해상도가 여전히 지정된 한도를 초과하면 계속해서 두 배로 나누어집니다
Analyzed framed are scaled down to a specified resolution (7, 1920 pixels on the longer side). This is how it works:
If the longer side of the source image exceeds the value specified in the Frame size change field, it is divided by two.
If the resulting resolution falls below the specified value, it is used further.
If the resulting resolution still exceeds the specified limit, it is divided by two, etc.
Info | ||
---|---|---|
| ||
For example, the source image resolution is 2048*1536, and the specified value is set to1000. In this case, the source resolution will be halved two times (512*384), as after the first division, the number of pixels on the longer side exceeds the limit (1024 > 1000). |
Info | ||
---|---|---|
| ||
If detection is performed on a higher resolution stream and detection errors occur, it is recommended to reduce the compression. |
Specify the minimum and maximum sizes of the captured faces as a percentage of the frame size (8).
In the Minimum threshold of face authenticity field, set the minimum level of face recognition accuracy for the creation of a track (9). You can set any value by trial-and-error. No less than 90 is recommended. The higher the value, the fewer faces are detected, while the recognition accuracy increases.
Select the processor for the face detection − CPU or NVIDIA GPU (10, see 검출 구성에 대한 일반 정보 참조).
Note | ||
---|---|---|
| ||
It may take several minutes to launch the algorithm on NVIDIA GPU after you apply the settings. |
If you use FaceCube integration (see FaceCube 통합 구성 참조), activate the Send face images parameter (11).
Enter the time in milliseconds after which the face track is considered to be lost in the Track loss time field (12). Acceptable values range is [1; 10000]. This parameter applies when a face moves in a frame and gets hidden behind an obstacle for some time. If this time is less than the set value, the face will be recognized as the same.
In the preview window, set the rectangular area of the frame in which you want to perform face detection. To select the area, move the anchor points .
...